Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Struct Biol ; 216(2): 108082, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38438058

RESUMO

While protein activity is traditionally studied with a major focus on the active site, the activity of enzymes has been hypothesized to be linked to the flexibility of adjacent regions, warranting more exploration into how the dynamics in these regions affects catalytic turnover. One such enzyme is Xylanase A (XylA), which cleaves hemicellulose xylan polymers by hydrolysis at internal ß-1,4-xylosidic linkages. It contains a "thumb" region whose flexibility has been suggested to affect the activity. The double mutation D11F/R122D was previously found to affect activity and potentially bias the thumb region to a more open conformation. We find that the D11F/R122D double mutation shows substrate-dependent effects, increasing activity on the non-native substrate ONPX2 but decreasing activity on its native xylan substrate. To characterize how the double mutant causes these kinetics changes, nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations were used to probe structural and flexibility changes. NMR chemical shift perturbations revealed structural changes in the double mutant relative to the wild-type, specifically in the thumb and fingers regions. Increased slow-timescale dynamics in the fingers region was observed as intermediate-exchange line broadening. Lipari-Szabo order parameters show negligible changes in flexibility in the thumb region in the presence of the double mutation. To help understand if there is increased energetic accessibility to the open state upon mutation, alchemical free energy simulations were employed that indicated thumb opening is more favorable in the double mutant. These studies aid in further characterizing how flexibility in adjacent regions affects the function of XylA.

2.
Proteins ; 91(7): 920-932, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36757060

RESUMO

Computationally modeling how mutations affect protein-protein binding not only helps uncover the biophysics of protein interfaces, but also enables the redesign and optimization of protein interactions. Traditional high-throughput methods for estimating binding free energy changes are currently limited to mutations directly at the interface due to difficulties in accurately modeling how long-distance mutations propagate their effects through the protein structure. However, the modeling and design of such mutations is of substantial interest as it allows for greater control and flexibility in protein design applications. We have developed a method that combines high-throughput Rosetta-based side-chain optimization with conformational sampling using classical molecular dynamics simulations, finding significant improvements in our ability to accurately predict long-distance mutational perturbations to protein binding. Our approach uses an analytical framework grounded in alchemical free energy calculations while enabling exploration of a vastly larger sequence space. When comparing to experimental data, we find that our method can predict internal long-distance mutational perturbations with a level of accuracy similar to that of traditional methods in predicting the effects of mutations at the protein-protein interface. This work represents a new and generalizable approach to optimize protein free energy landscapes for desired biological functions.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Proteínas/química , Entropia , Mutação , Ligação Proteica
3.
Protein Sci ; 30(9): 1804-1817, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34076319

RESUMO

With over 150 heritable mutations identified as disease-causative, superoxide dismutase 1 (SOD1) has been a main target of amyotrophic lateral sclerosis (ALS) research and therapeutic efforts. However, recent evidence has suggested that neither loss of function nor protein aggregation is responsible for promoting neurotoxicity. Furthermore, there is no clear pattern to the nature or the location of these mutations that could suggest a molecular mechanism behind SOD1-linked ALS. Here, we utilize reliable and accurate computational techniques to predict the perturbations of 10 such mutations to the free energy changes of SOD1 as it matures from apo monomer to metallated dimer. We find that the free energy perturbations caused by these mutations strongly depend on maturational progress, indicating the need for state-specific therapeutic targeting. We also find that many mutations exhibit similar patterns of perturbation to native and non-native maturation, indicating strong thermodynamic coupling between the dynamics at various sites of maturation within SOD1. These results suggest the presence of an allosteric network in SOD1 which is vulnerable to disruption by these mutations. Analysis of these perturbations may contribute to uncovering a unifying molecular mechanism which explains SOD1-linked ALS and help to guide future therapeutic efforts.


Assuntos
Apoproteínas/química , Superóxido Dismutase-1/química , Zinco/química , Regulação Alostérica , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Apoproteínas/genética , Apoproteínas/metabolismo , Sítios de Ligação , Cátions Bivalentes , Expressão Gênica , Humanos , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Mutação , Agregados Proteicos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Termodinâmica , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...